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An analysis is presented of laminar fully developed flow in a curved tube of 
circular cross-section under the influence of a pressure gradient oscillating 
sinusoidally in time. The governing equations are linearized by an expansion 
valid for small values of the parameter (a/R) [Ku/ov]2, where a is the radius of 
the tube cross-section, R is the radius of curvature, v is the kinematic viscosity of 
the fluid and K and w are the amplitude and frequency, respectively, of the 
pressure gradient. A solution involving numerical evaluation of finite Hankel 
transforms is obtained for arbitrary values of the parameter a = u(w/v)Q. In  
addition, closed-form analytic solutions are derived for both small and large 
values of a.  The secondary flow is found to consist of a steady component and 
a component oscillatory at  a frequency 2w, while the axial velocity perturbation 
oscillates at w and 30. The small-a flow field is similar to the low Dean number 
steady flow configuration, whereas the large-a flow field is altered and includes 
secondary flow directed towards the centre of curvature. 

1. Introduction 
The steady fully developed flow of a viscous fluid in a curved tube is well 

understood. The nature of the flow field is characterized by the value of the 
Dean number D = (a/R)Q Re, where a is the radius of the tube cross-section, R is 
the radius of curvature of the tube axis and Re is the Reynolds number based on 
tube diameter and mean velocity. Dean’s perturbation solution (1927, 1928) is 
valid for small values of D. The numerical solutions of McConalogue & Srivastava 
(1968) and Truesdell & Adler (1970) describe the moderate Dean number flow 
field, while the asymptotic boundary-layer analyses of Bama (1963) and Mori & 
Nakayama (1965) are applicable at  large Dean numbers. 

In  contrast to the steady flow situation, the problem of unsteady flow in 
a curved tube has been, for Che most part, ignored. This paper treats the problem 
of pulsating flow under the influence of a pressure gradient oscillating at  fre- 
quency w. Since this study was completed, a parallel effort by Lyne (1970) has 
appeared. Lyne has treated the case where the frequency parameter wa2/v is 
large and the parameter K2/(Raw4) is small. Here Kis proportional to the pressure- 
gradient amplitude and v is the kinematic viscosity of the fluid. The present 
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FIGURE 1. Toroidal co-ordinate system. 

analysis, which follows the lines of Dean’s (1927, 1928) perturbation solution 
for steady flow, deals with small, moderate and large values of the frequency 
parameter, but is restricted to small values of the amplitude parameter 

(a/R) [Ka/wv]? 

2. Governing equations 
It is convenient to write the equations of motion in the toroidal co-ordinate 

system ( F ,  $,8) illustrated in figure 1. A cross-section in the tube is located by 
the angle 8, measured from some reference axis. A point P in the cross-section is 
located by the polar co-ordinates F and $. The radius of curvature of the tube 
axis is denoted by R. 

The ( F ,  $, 8) components of velocity are denoted by (77, V ,  W ) .  The assumption 
of fully developed flow dictates that all three velocity components be independent 
of 8. 

The continuity equation for incompressible flow, 

a a - (FRU)+- (RV)  = 0, 
a? a$ 

can be identically satisfied through the introduction of a stream function $ 
such that 
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= R W are the The governing equations for T and the axial velocity function 
axial component of the vorticity equation (Goldstein 1938)' 

a an 
at [ ar F(R+r sin $)2 -(D2$) + 2 0  ~ C O S ~  --sin $ - 

= vF(R+Fsi11$)~04$, (2.3) 
and the I9 component of momentum equation, 

The notation 
R+Fsin$ 8 r 1 

D2 = F [% (R+isin$g)+$(F(R+Fsin$)$)] 

has been employed in writing the above equations. The associated boundary 
conditions are the requirements that all three velocity components must vanish 
on the tube wall. Thus 

aTlac$ = a$pr = a = o at r = a. 

The set of equations (2.3) and (2.4) can be simplified by restricting the analysis 
to only slightly curved tubes. That is, when R $ a, the approximations 

R+?sin$ M R and D2 z V2, 

where V2 is the ordinary harmonic operator in polar co-ordinates, can be invoked. 
The pressure gradient in (2.4) is assumed to vary sinusoidally with time. Hence 

- (p~1-1 appe = K cos ut, 
where the amplitude K is a prescribed constant. 

At this point, the variables can be non-dimensionalized as follows: 

In  terms of the non-dimensional variables, (2.3) and (2.4) become 

and 

where a2 = wa2/v. 
The frequency parameter a2 may be interpreted either as an oscillatory 

Reynolds number, or as the ratio of a characteristic diffusion time a2v-l to 
a characteristic oscillation time u-1. The principal objective of this analysis is 
to determine the nature of the flow field at  various values of a. 



696 R. C. Zalosh and W .  G .  Nelson 

Since the ratio a/R has been assumed to be small, the dependent variables, 9 
and w, will be expanded in a power series in a/R: 

a 

a (2.7) 

It is understood that the coefficients in (2.7) are actually functions of the in- 
dependent variables r,  q5 and t and the frequency parameter a. 

Substitution of (2.7) into (2.5) and (2.6), and the collection of terms with 
common powers of a/R, leads to the following set of linear equations: 

Ka3 a2-- awO v2wo = - cost, 
at V2 

(2.10) 

The solutions to (2.8)-(2.10) will provide a first-order estimate of the secondary 
flow and the axial velocity. 

3. Methods of solution 
3.1. Hankel transform solution 

Equation (2.8) represents the momentum equation for flow in a straight tube 
subjected to a sinusoidally oscillating pressure gradient. The well-known solution 
(Schlichting i960, p. 419) can be written as 

wo = [Ka/wv] {B cos t + (1  -A)  sin t>, 

bei (a)  ber (ar) + ber (a )  bei (ar) 
B =  

bei2 (a)  + ber2 (a )  where 

and 
ber (a) ber (ar) + bei (a) bei (ar) 

bei2 (a)  + ber2 (a )  
A =  

Substitution of (3.1) into the right-hand side of (2.9) reveals that the secondary 
flow is composed of a steady part $oo and o part $oz that varies as e2it. The 
governing equations for these two components are 

and 

(3.31 

V4$02-2ia2V2~02 = cos$. 

\ I  

These equations are amenable to solutions of the form 

@oo = [Ka/wv]2Fo(r) cos q5, @02 = [Ka/wvI2F2(r) cos $. 
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The original boundary conditions on + now require that 

Fo = dFo/dr = F2 = dF2/dr = 0 a t  r = 1. (3.4) 

The appearance of the biharmonic and Laplacian operators in (3.2) and (3.3) 
suggests that Hankel transforms may provide a convenient means for solving 
for Po and F2. The finite domain and homogeneous boundary conditions lend 
themselves to the finite Hankel transform introduced by Sneddon (1951, p. 82) :  

(3.5) 

The inversion formula is 

where tj denotes the j th  root of Jl(x) = 0. 
When the Hankel transform is applied to (3.2) and (3.3), the complicated terms 

on the right-hand side of the equations cannot be evaluated analytically. There- 
fore, the transformed solutions for Fo and F, have been computed and inverted 
numerically using a Gaussian quadrature formula to evaluate the integrals. The 
details of the solution can be found in Zalosh (1970). 

The resulting expression for $o is 

$o = [Ka/wvI2 [Fo + FZR cos 2t - F,, sin 2t] cos q5, (3.7) 

where Fa and F,, are the real and imaginary parts of F,. Equations (3.1) and 
(3.7) can now be used to evaluate the right-hand side of (2.10). The ensuing 
equation for w1 is 

The t and q5 variations on the right-hand side of (3.8) suggest a solution for w1 
of the form 

w1 = +[Ka/wvI3 sin q5 Re (Gl(r) eit + G3(r) e3it}. (3.9) 

When (3.9) is substituted into (3.8), two linear ordinary differential equations 
for GI and (7, are obtained. These equations have also been solved numerically 
using finite Hankel transforms in the same manner as for Fo and Fa. 

The numerical solutions produced consistent results at low and moderate 
frequencies of oscillation, but difficulties were encountered at  high frequencies. 
These difficulties were due to a lack of convergence in the inversion formulae for 
the Hankel transforms at  values of a higher than about 8 .  The series may be 
semiconvergent at large values of a, or the divergence may be due to numerical 
errors arising in the evaluation of highly oscillatory integrals. At any rate, the 
following approximate solution is proposed for high frequencies. 
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3.2. Boundary-layer approximations 
At large frequencies, the exact solution (3.1) for pulsating flow in a straight 
pipe indicates that the flow field consists approximately of a uniform inviscid 
central core together with a viscous boundary layer adjacent to the wall. The 
appearance of a boundary layer suggests that boundary-layer-type approxima- 
tions can be used to simplify the governing equations and obtain closed-form 
solutions. 

Lyne (1970) developed solutions to (2.5) and (2.6) for the high frequency regime 
through the use of matched asymptotic expansions in inverse powers of a. 
Comparison with Lyne’s analysis is facilitated when Lyne’s characteristic 
velocity F is identified with K/w. Thus, in Lyne’s notation, the present work is 
restricted to small values of B,, where 

On the other hand, Lyne’s solutions are applicable for both R, small and R, 
large, providing a B I and F2/Raw2 is small. 

The approach that is adopted here is to simplify (2.8)-(2.10) further by em- 
ploying the approximation a/& >> l / r  in the boundary layer. Solutions to the 
resulting boundary-layer equations are matched to inviscid core solutions. 

For the zeroth-order axial velocity distribution this approach leads to the 
boundary-layer solution 

~~ 

sinh (i* ar) { [ sinh(i9a) 
wo = Re i e f t  

which, in the core, becomes 
lim wo = [Ka/ov] sin t .  
?.-to 

(3.10) 

(3.11) 

The secondary-flow stream function at large a is of the form 

$o(r, 9, t )  = cos ${P0(r) + Re [e2itF2(r)]} [Ka/ovI2, (3.12) 

where Fo and F2 are given by 

16 sinh2 (a/2*) - sinh (a/29) 1 ’ 24 sinh 2x sinh x cos (p + x )  P6(r) = a-3 [c1x+c3z3+-  

+ a,x + a2 sinh ( 2  i* x )  , 1 e@+x) sinh x eW+W sinh ( 2 ~ )  and F2(r)  = a-3 [ sinh (a/2*) + 16 sinh2 (a/2%)’ 

where p’ = 471. - 29/a, 

a, = (2 - g29) (a + i(a - 1))/29(a - Q)2,  
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possible to use boundary-layer approximations to seek solutions of the 
order equations in the perturbation scheme, but; cumbersome algebra 
this prospect unappealing. 

It is 
higher 
makes 

3.3. Qmsi-steady approximation 
The case of low frequency flow (small a)  also lends itself t o  a closed-form solution. 
A low frequency approximation for wo can be obtained by expanding (3.1) in 
a power series in ar. Power series expressions for the ber and bei functions lead 
to the result; 

wo = [Ku3/v2]{~(l-r2)~ost+~a2(3-4r2+r4)sint+O(a4)}. (3.13) 

The first term in (3.20) is recognizable as the parabolic velocity profile in phase 
with the applied pressure gradient. The second term represents a first-order 
correction for inertial effects, and manifests itself as a slight phase lag. A com- 
parison between (3.13) and the exact solution (3.1) at a = 2 indicates that the 
low frequency approximation deviates from the exace solution by less than 5 %. 
Of course, lower values of a produce better accuracy. 

If (3.13) is used to evaluate the right-hand side of (2.9)’ a low frequency solu- 
tion for $o should be of the form 

$0 = $00 + a2$02 + O(a4)- (3.14) 

When terms with like powers of a! are collected in (2.9), the solutions 

(3.15) 

and 

$02 = - [Ku3/4v2l2 cos Q sin 2t[1475r - 3435.5r3 + 2500r5 - 592.5r7 

+52r9+r11]/(288x 960) (3.16) 

The first-order axial velocity can be found from (2.10) with the right-hand side 

Following the same approach as for wo and $o, a solution for w1 of the form 

w1 = w10 + a2Wl2 + O(a4) (3.17) 

is assumed. When (3.17) is substituted into (3.16)’ and terms with like powers of a 
are segregated, two quasi-steady equations for wl0 and w12 are established. The 
solutions are 

wl0 = [Ka3/4v2I3 Flo(r) sin q5 C O S ~  t ,  (3.18) 

where Flo(r) = (19r - 40r3 + 30r5 - lor7 + r9)/720 x 16, 

and 
where 

are obtained. 

evaluatedfrom (3.13), (3.15) and (3.16). 

wlz = [K+v2]3 F12(r) sin Q sin t cos2 t ,  (3.19) 

2238r3 + 218rS - 5 1 5 ~ ~  + 14-9r9 -++$T1’ ) /[72 x 9601. 6 8 

Equation (3.18) is identical to Dean’s first-order axial velocity (except for the 
C O S ~  t factor), whereas (3.19) represents an unsteady correction at  low frequencies. 
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Inside I 1 Outside 
(c) 

FIGURE 2. Secondary-flow streamlines a t  t = 0. (a) a = 1. (b )  a = 5 .  (c) a = 10. 

4. Results 
Examination of the solutions in the preceding sections indicates that the 

expansion parameter is actually (a/R) [Ka/wvI2 or, if the frequency is suppressed, 
(a/R) [Ka3/v2I2, and not the simple geometric ratio a/R that was implied in 3 2. 
If K/w is interpreted as a characteristic axial velocity, (a/R) [Ka/ov]2 plays the 
role of an unsteady Dean number. The results presented here should be limited 
to small values of (all?) [Ka3/v2], with the limiting value dependent on the 
frequency. 

An indication of the nature of the secondary flow at various frequencies can 
be ascertained from the streamline patterns. The solutions for the secondary- 
flow stream function allow the streamlines to be drawn at  a prescribed time during 
the cycle. This has been done by linking the output of a CDC 3300 computer to 
a Calcomp plotter. The results are illustrated in figures 2 (a) ,  ( b )  and (c) for low, 
moderate and high frequencies, respectively. 

The low frequency and moderate frequency streamline patterns are reminiscent 
of the low Dean number steady flow field. The situation at high frequencies is 
markedly different. The streamlines are elongated and are concave downwards 
towards the interior. The change in streamline shape at  high frequencies occurs 
because the tangential velocity becomes much larger than the radial velocity 
.throughout most of the cross-section. 



Pulsating flow in a curved tube 70 1 

1.0 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1.0 
Inside Outside 

(4 

1.0 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1.0 
Inside Outside 

(h) 

1.0 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1.0 
Inside Outside 

(4 
FIGURE 3. Particlepaths. (a )  a = 1, (a /R)  [Ka3/u2I2 = 1600, traverse time = 1 . 0 4 ~ .  ( 6 )  01 = 5, 
(a/R) [ K a s ] ~ 2 ] 2  = 7.8 x 104, traverse time = 2 . 6 0 ~ .  (c) a = 10, (a/R) [Ka3/va]z = loB, tra- 
verse time = 3 . 5 2 ~ .  
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The differences between the secondary flow field in the various frequency 
regimes is also evident from the particle path projections in the plane of the 
cross-section. The secondary-flow particle paths were obtained by numerically 
integrating the equations 

ar/az= u, a+/az= V ~ F ,  

where U and V are obtained by differentiating the solutions for the secondary- 
flow stream function according to (2.2). The path of a particle originally located 
at the point r = 0.2, q!~ = 0 has been drawn in figures 3 (a), (b )  and (c) for values 
of a of 1, 5 and 10 respectively. The value of the parameter (a/R) [Ka3/v2I2 was 
chosen so as to complete the path in sl reasonable amount of computation time 
without sacrificing accuracy, larger values of (a/R) [Ka3/v2I2 being required at  
high frequencies. The paths reveal that a particle near the interior of the cross- 
section will migrate quite close to the wall at  high frequencies. 

For a given value of (a/R) [Ka3/v2I2, the magnitude of the secondary velocities 
decreases sharply with increasing frequency. This trend is illustrated in figure 4, 
where the time-averaged secondary velocity at  the centre of the cross-section 
is plotted as a function of the frequency parameter a. Both the Hankel transform 
solution and the boundary-layer approximation predict a reversal of flow at the 
centre of the cross-section at  high frequencies. That is, the secondary flow is 
directed toward the centre of curvature, in contrast to the steady flow and low 
frequency situation. The flow reversal occurred at  a value of a of about 9 with 
the Hankel transform solution and 10 with the boundary-layer approximation. 
This phenomenon also resulted from Lyne's solution (1970). 

A physical explanation for the flow reversal can be obtained from a glance at 
the axial velocity profiles. Velocity profiles across the diameter + = Qn, @r lying 
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F ~ a m  5 (a). For legend see page 704. 

in the plane of the pipe axis are illustrated in figure 5 (a) for a = 1. The sinusoidally 
varying pressure gradient is plotted alongside the profiles so that the phase 
relationships can be appreciated. At low frequencies, the velocities appear to 
be in phase with the applied pressure gradient. 

Axial velocities are largest near the centre of the cross-section, although they 
are slightly larger on the outer portion of the diameter. Consequently, the 
centrifugal force is largest near the pipe axis. The centrifugal-force gradient 
2wcos$(i3w/ar) is the driving force for the secondary motion that develops 
within the cross-section. At low frequencies, the centrifugal-force gradient drives 
the fluid towards the outer wall along a horizontal diameter. 

The high frequency picture (figure 5 ( b ) )  is quite different. There is a double 
off-axis peak in the axial velocity, and the centrifugal-force gradient is opposite 
in sign from Che low frequency situation. Consequently, the secondary flow is 
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FIGURE 5. Velocity profiles across the horizontal diameter q5 = &r,&r. (a) a = 1, 
( + q [ ~ a 3 / ~ 2 1 2  = 1600, c = K C ~ ~ V .  ( b )  a = 10, ( ~ R ) [ K ~ U V I ~  = 2 x 103, c = K ~ ~ / ~ O O V ,  
C?, ~O-*(V/R)[K~/OV~~. 

in the opposite direction, towards the inner wall. This type of flow pattern has 
been observed experimentally by Drinker et al. (1969) and Lyne (1970). 

Figure 5 ( b )  also indicates that the axial velocity lags behind the pressure 
gradient by one quarter of a cycle. A similar phase relationship exists for the 
axial velocity profile along the vertical diameter q5 = 0, n (not illustrated), 
although the asymmetry due to  curvature is not present. The secondary velocity 



Pul~atingJEow in G curved tube 705 

profiles in figure 5 ( b )  exhibit a region of flow reversal at t = in-, gn- that is not 
present at t = 0, n-. The fact that the secondary flow varies at twice the frequency 
of the applied pressure gradient is also evident from figure 5. 

5. Summary and conclusions 
Three different solutions for fully developed pulsating flow in a curved tube 

have been presented. The solutions, which are restricted to small values of 
(a/R) [ K ~ / O V ] ~ ,  span the range from small to large values of a. 

The results reveal that the secondary flow is composed of a steady component 
and a component oscillating at the second harmonic of the applied pressure 
gradient. Both of these components decrease rapidly in magnitude with in- 
creasing a. When a is less than about two, the streamlines and particle paths are 
almost identical to the low Dean number steady flow pattern. At large values 
of a, the streamlines become concave-convex and a fluid particle initially near 
the tube axis migrates close to the tube wall. Thus, the secondary-flow convective 
mixing is of greater extent at high frequencies because of the large excursions of 
fluid particles, but of lower intensity because of the smaller velocities. Con- 
sequently, there is no clear optimum value of a for possible heat- and mass- 
transfer applications. 

The secondary-flow reversal noted by Lyne (1970) and Drinker et al. (1969) 
has also been found here for values of a larger than about 9. 

For a given value of (a/R)  [Ka3/v2]2, axial velocity perturbations also decrease 
sharply with increasing a. The perturbations oscillate at  the first and third 
harmonics of the pressure gradient. As in the low Dean number steady flow 
situation, the axial velocity perturbation varies with sin c j .  Depending on the 
time in the cycle, the axial velocity profiles can become blunter on sharper than 
the straight-tube profiles. 
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